#include <bits/stdc++.h>
using namespace std;
#define optimize() \
ios_base::sync_with_stdio(false); \
cin.tie(NULL);//cout.tie(NULL);
#define fraction() \
cout.unsetf(ios::floatfield); \
cout.precision(6); \
cout.setf(ios::fixed, ios::floatfield);
#define file() \
freopen("input.txt", "r", stdin); \
freopen("output", "w", stdout);
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int, int> pr;
template <typename T> using ordered_set = tree <T, null_type,less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
int lcm(int a, int b)
{
return (a * b) / __gcd(a, b);
}
int gcd(int a, int b)
{
return __gcd(a, b);
}
#define el "\n"
const int mod = 1e9+7;
//const int mx = 5e5 + 125;
bool com(const pair<ll, ll> &p1, const pair<ll, ll> &p2)
{
if (p1.first == p2.first) return p1.second < p2.second;
return p1.first < p2.first;
}
const int mxx= 1e8;
bitset<mxx> isPrime;
vector<int> primes;
int mx=1e6+5;
map<int,int>m;
void primeGen ( int n )
{
for ( int i = 3; i <= n; i += 2 ) isPrime[i] = 1;
int sq = sqrt(n);
for ( int i = 3; i <= sq; i += 2 )
{
if(isPrime[i])
{
for ( int j = i*i; j <= n; j += i )
{
isPrime[j] = 0;
}
}
}
primes.push_back(2);
for ( int i = 3; i <= n; i += 2 )
{
if(isPrime[i] == 1)
{
primes.push_back(i);
}
}
}
long long power(int n)
{
ll res=1;
for(int i=0; i<n; i++)
{
res=(res*2);
}
return res;
}
void primeFactors ( int n ) /// n = 40131
{
vector<int> factors;
/// primes = 2, 3, 5, 7, 11, 13, 17, 19, 23
if(isPrime[n]==0)
{
for ( auto p : primes ) /// p = 11
{
if( 1LL * p * p > n ) break;
if( n % p == 0 ) /// n = 13, p = 7
{
m[p]++;
while ( n % p == 0 ) /// n = 13, p = 7
{
//factors.push_back(p); /// factors = { 3, 3, 7, 7, 7 }
n /= p; /// n = 13
}
}
}
}
if(n > 1)
{
//factors.push_back(n);/// factors = { 3, 3, 7, 7, 7, 13 }
m[n]++;
}
}
/// calculating sum of divisors by prime factorization :
/*ll SOD(ll n)
{
ll sod=1;
ll mul=0;
ll sum=0;
for(auto x:primes)
{
if(1LL*x*x>n)break;
if(n%x*1LL==0)
{
mul=1;
sum=1;
while (n%x*1LL==0)
{
mul*=x*1LL;
sum+=mul;
n/=x;
}
sod*=sum;
}
// sod*=sum;
}
if(n>1)sod*=(1+n);
return sod;
}*/
/// for O(sqrt(n)) solution :
/*ll sod2(ll n)
{
ll sum=0,i;
for(i=1;i<=sqrt(n);i++)
{
ll cnt=(n/i)-i;
sum+=cnt*2;
}
sum+=sqrt(n);
return sum;
}*/
/// Calculating power of a^b :(Binary exponential method:O(log n))
/// Using iterative Form :(its Faster than the recursive process)
ll binary_exponential(ll a, ll b)
{
a%=mod;
ll result=1;
while(b>0)
{
if(b&1)result=(result*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return result;
}
/// Modular multiplicative inverse :
/// Theory : A^(m�2)mod M = A^�1 mod M
/*ll modular_multiplicative_inverse(ll a,ll mod)
{
ll ans=binary_exponential(a,mod-2) % mod;
return ans;
}*/
void giveanswer()
{
int a,b,i;
cin>>a>>b;
for(i=2;i<=100;i++)
{
if(i%a!=0 and i%b!=0)
{
cout<<i<<el;
return;
}
}
cout<<-1<<el;
}
int main()
{
optimize();
fraction();
//primeGen(1e6);
int t;
cin>>t;
for(int i=1; i<=t; i++)
{
giveanswer();
}
}